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We construct a one-dimensional piecewise linear intermittent map from the interevent time distribution for
a given renewal process. Then, we characterize intermittency by the asymptotic behavior near the indifferent
fixed point in the piecewise linear intermittent map. Thus, we provide a framework to understand a unified
characterization of intermittency and also present the Lyapunov exponent for renewal processes. This method
is applied to the occurrence of earthquakes using the Japan Meteorological Agency and the National Earth-
quake Information Center catalog. By analyzing the return map of interevent times, we find that interevent
times are not independent and identically distributed random variables but that the conditional probability
distribution functions in the tail obey the Weibull distribution.
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I. INTRODUCTION

Recently, intermittent phenomena, characterized by a
power law of the laminar state, have attracted interest in
nonequilibrium statistical physics as well as biological and
atomic physics. Examples of intermittent phenomena are the
fluorescence of quantum dots �1� and nanocrystals �2�, and
ion channel gating �3�. Earthquakes can be recognized as an
intermittent phenomenon. Actually, a 1 / f� spectrum is ob-
served in the P-wave and S-wave velocities in function of
depth �4�. Also, the residence time distribution of the laminar
state, in which the number of earthquakes per unit time is
lower than a threshold, obeys a power law �5�, and the inter-
mittency for the occurrence of earthquakes in Irpinia, Italy,
has been quantified using the correlation codimension �6�.
Moreover, intermittency appears in the stick-slip model of
earthquakes �7�. In such non-Poisson processes, a long-time
tail and an aging have been clearly observed �8,9�. Nonhy-
perbolic dynamical systems, which have at least one indif-
ferent fixed point, also show intermittent behavior such as a
long-time tail and nonstationarity �10,11�. By applying re-
newal theory to symbolic dynamics generated by the coarse
graining of an orbit, it was also shown that nonhyperbolic
dynamical systems generate a 1 / f spectrum �10,12�.

An outstanding problem in intermittent phenomena is the
incompleteness of the usual statistical descriptors such as
mean and variance because of the divergence of the mean
interevent time �13�. It is remarkable that infinite measure
preserving dynamical systems, which are closely related to
intermittent phenomena, exhibit intrinsic nonstationarity
�14�. Even when the mean interevent time is finite, the long
tail of distribution makes it difficult to characterize the inter-
event time by the mean. Usually, intermittency is character-
ized by the exponent of a power law. However, this charac-
terization does not include a long tail distribution heavier or
not heavier than a power law. In the present paper, we char-
acterize intermittency to estimate the difficulty of forecasting
rare events. Moreover, the degree of activity of events is

studied from the viewpoint of a nonhyperbolic dynamical
system.

Renewal processes have been drawing attention not only
in mathematics but also in physics and are useful to analyze
intermittent phenomena �15�. In fact, intermittent phenomena
can be rewritten as renewal processes by focusing attention
on the residence time distribution of laminar state. In re-
newal processes, it is assumed that the interevent times be-
tween renewals are independent and identically distributed
�iid� random variables. For a given renewal process we con-
struct a one-dimensional dynamical system to characterize
intermittency in renewal processes. Then, we develop a con-
cept of intermittency based on dynamical systems. One of
our results is a unified characterization of intermittency in
renewal processes, where we classify renewal processes into
five different regimes according to difficulty to forecast the
next event: �i� nonstationary essential singular intermittency,
�ii� nonstationary very strong intermittency, �iii� stationary
strong intermittency, �iv� stationary weak intermittency, and
�v� stationary nonintermittent chaos.

The paper is organized as follows. In Sec. II, we construct
one-dimensional piecewise linear intermittent maps from re-
newal processes with any distribution, and then intermittency
is characterized by the asymptotic behavior near the indiffer-
ent fixed point. Using the constructed map, we can calculate
the Lyapunov exponent of a renewal process. In Sec. III, we
study the occurrence of earthquakes. To apply our method to
the occurrence of earthquakes in Japan and in the world, we
verify whether the occurrence of earthquakes is a renewal
process or not. As a result, we find that the occurrence of
earthquakes is not a renewal process but that the tail of con-
ditional probability distribution function of interevent times
obeys the Weibull distribution. Then, our method is applied
to the occurrence of earthquakes using the conditional prob-
ability distribution function. Conclusions are given at the end
of the paper.

II. UNDERLYING DYNAMICAL SYSTEMS IN RENEWAL
PROCESSES

A. Construction of one-dimensional maps

To characterize intermittency, we construct one-
dimensional maps from discrete time renewal processes. Let*akimoto@aoni.waseda.jp
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f�m� be the probability distribution function of a random
variable m �m=1,2 , . . .�, and F�m�=�k=1

m f�k� and F�m�=1
−F�m�, where F�0�=0 and F�0�=1. Then, we can obtain the
following relationship:

f�m� = F�m − 1� − F�m� . �1�

Using this relation, we can construct a one-dimensional map
on �0,c� in which the residence times in �0,1� are iid random
variables with probability f�m�. Concretely, the map is given
by a piecewise linear map T : �0,c�→ �0,c� defined by

xn+1 = T�xn� = �
ak−1 − ak

ak − ak+1
�xn − ak� + ak−1, xn � �ak+1,ak� ,

xn − 1

c − 1
, xn � �1,c� , �

�2�

where a sequence ak is given by ak=F�k� and F�−1�=c.
Actually, a point in the interval �am ,am−1� is mapped into the
interval �1,c� by m iterations, and then the probability of the
residence time m in the interval �0,1� is given by am−am−1
�see Fig. 1�.

Next, we focus on the constructed map near the fixed
point �x=0�. The derivative of the map is given by

T��x��x��an,an−1� =
an−1 − an

an − an+1
=

f�n�
f�n + 1�

. �3�

Considering the maps near the fixed point, i.e., x	an
=F�n�, an−1−an	0, we obtain the asymptotic form,

T��x� 

f„F−1�x�…

f„F−1�x� + 1…
as x → 0. �4�

In particular, the asymptotic behavior for a power-law distri-
bution �F�m�
m−�� is given by

T��x� − 1 � x1/� as x → 0. �5�

This map is the same as the Pomeau-Manneville map �16�,
which is a typical example of intermittent maps, and the
piecewise linear version is also well studied as an intermit-

tent map �17,18�. The asymptotic behavior is given by

T��x� 
 e1/� as x → 0 for F�m� 
 e−m/�, �6�

and

T��x� − 1 � �− log x��a−1�/a as x → 0 �7�

for the Weibull distribution �F�m�
e−�m / ��a
� �a�1�. In the

case of the log-Weibull distribution �F�m�
e−�log m / ��b
�, the

asymptotic behavior is given by

T��x� − 1 � exp�− ��− log x�1/b� as x → 0. �8�

We refer to Eqs. �7� and �8� as the Weibull map and the
log-Weibull map, respectively. Note that the Weibull map
with exponent a�1 and the log-Weibull map have the indif-
ferent fixed point �T��0�=1�.

B. Characterization of intermittency

In intermittent chaos, an orbit stagnates near indifferent
fixed points for an extremely long time �laminar state�, and
then irregular chaotic motion occurs �see Fig. 2�. The resi-
dence time distribution of the laminar state is determined by
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FIG. 1. Piecewise linear map T�x� for the Weibull distribution
�F�m�=exp�−�m /5�0.5�� and c=2. Circles indicate the end points of
the straight-line segments.
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FIG. 2. Time series of piecewise linear intermittent maps. The
map in the upper figure is constructed using the power-law distri-
bution �F�m�=m−1�. The map in the lower figure is constructed
using the Weibull distribution �F�m�=exp�−�m /5�0.35��.
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the structure of a map near the indifferent fixed points. Here,
we characterize intermittency from the asymptotic behavior
of the derivative at the indifferent fixed point �x=0�,

T��x� − 1 � L�x�x� as x → 0, �9�

where T�x� is the one-dimensional map constructed by a re-
newal process and the function L�x� is slowly varying at 0
�19�. The degree of intermittency is classified into five types:

�i� �=�, i.e., T��x�−1�e−x−��
as x→0 ����0�: nonstation-

ary essential singular intermittency; �ii� 1	���: nonsta-
tionary very strong intermittency; �iii� 0���1: stationary
strong intermittency; �iv� �=0: stationary weak intermit-
tency; and �v� T��x�−1�0 as x→0: stationary nonintermit-
tent chaos.

The intensity of intermittency can be quantified by the
exponent �. The larger � is, the more difficult to forecast the
next event becomes. This is because slightly different rein-
jections near the fixed point make the residence time in �0,1�
completely different in the case of large �. With regard to
type �iv�, to be more precise,

T��x� − 1 = O„exp�− �− log x�
�… as x → 0, �10�

we can quantify the intensity of intermittency by the expo-
nent 
, and for

T��x� − 1 = O 1

�− log x��� as x → 0, �11�

the intensity of intermittency is determined by the exponent
�. Exponents �, 
, and � represent the degree of the diffi-
culty to forecast events in renewal processes because the
sensitive dependence of the interevent time on reinjection
points is determined by these exponents.

Note that the renewal function does not increase linearly
with time for long times; that is, the occurrence of renewals
is not stationary, when the mean of the interevent times is not
finite �20�. Accordingly, the occurrence of renewals becomes
nonstationary in the case of 
�1. For 
�1, intermittency is
classified into the nonstationary essential singular intermit-
tent regime.

C. Lyapunov exponent

We can calculate the Lyapunov exponent in renewal pro-
cesses because we can construct one-dimensional maps from
renewal processes. In general, the Lyapunov exponent  is
defined by

 = lim
n→�

1

n�
k=1

n

ln�T��xk�� , �12�

where T�x� is a one-dimensional map constructed from a
renewal process. The slope of the piecewise linear map on
�a1 ,a0� and �1,c� is given by �c−1� / �1−a1� and 1 / �c−1�,
respectively. Therefore, the Lyapunov exponent does not de-
pend on c because ln�c−1� / �1−a1�+ln 1 / �c−1�=−ln�1
−a1�. However, the Lyapunov exponent strongly depends
upon the unit of time in renewal processes. Physical meaning
of the Lyapunov exponent is the degree of activity of events.

In other words, a large Lyapunov exponent implies high ac-
tivity of an underlying dynamical system.

III. APPLICATION TO THE OCCURRENCE
OF EARTHQUAKES

We apply this method to the occurrence of earthquakes
using the Japan Meteorological Agency �JMA� catalog �21�
and the National Earthquake Information Center �NEIC�
catalog �22�. The area of JMA catalog is enclosed within
25–50°N latitude and 125–150°E longitude with magni-
tude M �2 and that of NEIC is the world. We are interested
in using the interevent time distribution for a tail part to
construct a one-dimensional piecewise linear map. Similar to
previous studies �23–25�, we consider earthquakes with mag-
nitude above a certain threshold Mc. In other words, we
study the interevent time statistics in which magnitude is
greater than Mc. Here, we use the earthquake data for JMA
and NEIC from January 1, 2001 to October 31, 2007 and
from January 1, 1973 to December 31, 2007, respectively.

To verify the hypothesis that the occurrence of earth-
quakes is a renewal process, we use the return map �tn , tn+1�
of interevent times, where tn is the nth interevent time. Then,
to analyze the dependence of the distribution of interevent
times F�tn+1� on the previous one tn in detail, we sorted data
in order

�t1, . . . ,tM� → �t1�, . . . ,tM� � ,

where ti�	 ti+1� for i=1,2 , . . . ,M −1, and we made ordered
data sets, T1,N , . . . ,TL,N, from them:

T1,N = �t1�, . . . ,tN�

N times

�, ¯ ,TL,N = �tNL+1� , . . . ,t�L+1�N�

N times

� ,

where N�L+1��M and N�L+2��M. To avoid statistical er-
ror, the number of data N in each ordered data set must be
more than 103. As shown in Fig. 3, the return map does not
yield a smooth curve. This is unlike the experiment of the
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FIG. 3. �Color online� Return map of interevent times in Japan
�Mc=3.0�. The dotted lines are averages of the interevent time,
where averages are taken in three different bins �N=1000, 10 000,
and 31 857�. Inset figure is a blowup of return map �Mc=3.0�.
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dripping water faucet, which did yield a smooth curve �26�.
Further, interevent times appear to be random. However, the
conditional average of an interevent time will be small if the
previous interevent time is small. In Fig. 3, the conditional
averages are taken in each ordered data set: the conditional
average on ordered data set Ti,N is given by

�i,N = �
tk�Ti,N

tk+1

N
.

Thus, an interevent time depends clearly on the one preced-
ing it. However, the average of an interevent time is constant
when the previous one is relatively large, which suggests that
the interevent times approach iid random variables in this
case.

We consider the interevent times conditioned on that the
previous interevent time is in the subset Ti,N, i.e., Ti,N�
= �tk+1 : tk�Ti,N ,k=1, . . . ,M�. Analyzing the conditional
probability distribution functions, F1�t� , . . . ,FL�t�, of inter-
event times for T1,N� , . . . ,TL,N� , we find that they change sys-
tematically. Moreover, we find that the conditional probabil-
ity distribution function FL�t� obeys the Weibull distribution
in almost the entire region, where the Weibull distribution
F�t� is defined by

F�t� = 1 − exp�− �t/��a� �13�

�see Figs. 4 and 5�. It is remarkable that all conditional prob-
ability distribution functions F1�t� , . . . ,FL�t� obey the
Weibull distribution in the tail region and that Fi�t� fits a
Weibull distribution asymptotically as i increases. Therefore,
the intermittency of the occurrence of earthquakes is station-
ary weak intermittency because the conditional probability
distribution functions F1�t� , . . . ,FL�t� of interevent times in
the tail are invariant and described by the Weibull distribu-
tion.

Analyzing the distribution for different Mc, we find that
the conditional probability distribution function FL�t� in al-
most the entire region and the tails of all conditional prob-
ability distribution functions obey the Weibull distribution.

Piecewise linear maps for F1�t� and F3�t� are demonstrated
in Fig. 6, where we coarse grain the interevent time t by
considering t� �2000�n−1� ,2000n� as the discrete interevent
time n. The asymptotic behavior of piecewise linear maps
near the origin is the same because the conditional probabil-
ity distributions in the tail region are invariant. As a result,
we classify the intermittency of the occurrence of earth-
quakes as stationary weak intermittency. The Weibull expo-
nent a, the root mean-square value, the intensity of intermit-
tency �, and the Lyapunov exponent  are summarized in
Table I. In this table, the Weibull exponent is obtained by the
Weibull fitting for the tail part of the conditional probability
distribution FL�t�, where bins of interevent times are set to be
equal in logarithmic scale. The root mean-square value is
defined as
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rms =
��

i=k

n�+k

�Fi − F�li��2

n� − 2
, �14�

where Fi is an experimental value of the conditional prob-
ability distribution, li is an interevent time of ith bin and
where we carry out the Weibull fitting on from kth to n�
+kth bin. In the calculation of the Lyapunov exponent, one-
dimensional maps are constructed from the renewal pro-
cesses with the Weibull distribution obtained by the above
Weibull fitting. The time unit is 1 s in the calculation of the
Lyapunov exponent.

We perform the same analysis for the occurrence of earth-
quakes in the world to investigate the universality of the
results in Japan. Surprisingly, the conditional probability dis-
tribution changes systematically, Fi�t� fits a Weibull distribu-
tion asymptotically as i increases, and the conditional prob-
ability distributions for the tail part obey the Weibull
distribution in the same manner as in the preceding analysis
�see Figs. 7 and 8�. The Weibull exponents are 0.93 and 0.92
for Mc=4.5 and 5.0, respectively, indicating the view that the
intermittency of the occurrence of earthquakes in the world
is classified into stationary weak intermittency.

IV. CONCLUSIONS

Intermittency of renewal processes is studied by con-
structing one-dimensional piecewise linear maps from re-
newal processes. As a result, characterization of intermittent

phenomena is extended to extremely heavy tail and stretched
exponential relaxation phenomena.

Analyzing the occurrence of earthquakes, we found that
the occurrence of earthquakes is not a renewal process,
which is in agreement with �27�. However, interevent times
approach iid. random variables when the previous interevent
time is relatively large, and the conditional probability dis-
tribution functions in the tail are described by the Weibull
distribution. Corral showed that interevent times of earth-
quakes clearly depend on the preceding interevent times
�28�. Compared with this study, our study gives the detailed
analysis of the conditional probability distribution.

It has been known that the distribution of interevent times
of earthquakes shows stretched exponential decay �23,24�,
which is consistent with our result in that it has the same
classification of intermittency. Exponential distribution or the
gamma distribution can be well fitted because the exponent
of the Weibull distribution is close to one. We note that the
Weibull plot is the most useful to determine the decay of the
distribution function. Focusing on the distribution function in
the tail part, we conclude that the Weibull exponent is
smaller than one. Therefore we characterize the intermittency
of the occurrence of earthquakes as stationary weak intermit-
tency. The intensity of intermittency of earthquakes depends
on the threshold Mc. In particular, the intensity of intermit-
tency increases monotonically with the threshold of magni-
tude, indicating the view that it is difficult to forecast the
occurrence of large earthquakes. We also estimate the
Lyapunov exponent of the renewal process with the Weibull
distribution F�t�, which measures the activity of earthquakes

TABLE I. Weibull exponent a, the root mean square �rms�, the intensity of intermittency �, and the
Lyapunov exponent  in Japan.

Mc a rms �  Number of earthquakes

2.0 0.966�0.001 0.013 0.035�0.001 4.6�10−3 130243

2.5 0.961�0.001 0.009 0.040�0.001 2.7�10−3 67912

3.0 0.946�0.001 0.020 0.057�0.001 1.4�10−3 31857
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FIG. 7. �Color online� Weibull plot of the conditional probabil-
ity distributions of interevent times of earthquakes in the world
�Mc=4.5 and N=104�.
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when the previous interevent time is relatively large. Gener-
ally, the occurrence of earthquakes is considered as a Markov
renewal process �29�. We can calculate the Lyapunov expo-
nent of the occurrence of earthquakes by extending one-
dimensional piecewise linear maps to three dimensional dy-
namical systems modeling Markov renewal processes if we
know the form of conditional probability distributions in the
entire region. For example, the dynamical system modeling
the occurrence of earthquakes is given as

T�x,n,i� = ��Tix,n + 1,i� , x � 1,

�Tlx,0,l� , x � �1,c� and n � �ml,ml+1� ,
�

�15�

where ml=min�t : t�Tl,N�, m1=1 and

Ti�x� = �
ak−1

i − ak
i

ak
i − ak+1

i �xn − ak
i � + ak−1

i , xn � �ak+1,ak� ,

xn − 1

c − 1
, xn � �1,c� , �

�16�

where a sequence ak
i is obtained from the conditional prob-

ability distribution Fi�t�.

To quantify intermittency in point processes, Bickel pro-
posed a clear estimation of intermittency using the correla-
tion codimension �30�. Although we assume that interevent
times are iid. random variables, which does not always hold
in point processes, we can study underlying dynamics of
intermittent phenomena with the aid of one-dimensional
maps. If we assume the integrate-and-fire model �31�, the
orbit xn in dynamical systems is considered to be the inte-
grated value of a signal that is behind intermittent phenom-
ena. In the occurrence of earthquakes, the integrated value
would be the accumulated energy on the crust. Therefore the
piecewise linear maps constructed would be related to dy-
namics of the energy accumulation and release in earth-
quakes.

ACKNOWLEDGMENTS

T.A. would like to thank N. Weissburg for fruitful discus-
sions. We thank the JMA and the NEIC for allowing us to
use the earthquake data. This research was financially sup-
ported by the Sasakawa Scientific Research Grant from The
Japan Science Society.

�1� H. Haase, C. G. Hübner, E. Reuther, A. Herrmann, K. Müllen,
and T. Basché, J. Phys. Chem. B 108, 10445 �2004�.

�2� X. Brokmann, J.-P. Hermier, G. Messin, P. Desbiolles, J.-P.
Bouchaud, and M. Dahan, Phys. Rev. Lett. 90, 120601 �2003�.

�3� S. B. Lowen, L. S. Liebovitch, and J. A. White, Phys. Rev. E
59, 5970 �1999�.

�4� K. Shiomi, H. Sato, and M. Ohtake, Geophys. J. Int. 130, 57
�1997�.

�5� M. Bottiglieri and C. Godano, Phys. Rev. E 75, 026101
�2007�.

�6� L. Telesca, V. Cuomo, and V. Lapenna, Geophys. Res. Lett.
28, 3765 �2001�.

�7� V. B. Ryabov and K. Ito, Pure Appl. Geophys. 158, 919
�2001�.

�8� P. Allegrini, P. Grigolini, L. Palatella, and B. J. West, Phys.
Rev. E 70, 046118 �2004�.

�9� G. Margolin and E. Barkai, J. Stat. Phys. 122, 137 �2006�.
�10� Y. Aizawa, Prog. Theor. Phys. 72, 659 �1984�.
�11� T. Akimoto and Y. Aizawa, J. Korean Phys. Soc. 50, 254

�2007�.
�12� A. Ben-Mizrachi, I. Procaccia, N. Rosenberg, A. Schmidt, and

H. G. Schuster, Phys. Rev. A 31, 1830 �1985�.
�13� In dynamical systems, the divergence of the mean interevent

time means that the invariant measure can not be normalized,
i.e., the infinite measure.

�14� T. Akimoto, J. Stat. Phys. 132, 171 �2008�.

�15� C. Godrèche and J. M. Luck, J. Stat. Phys. 104, 489 �2001�.
�16� P. Manneville and Y. Pomeau, Phys. Lett. 75, 1 �1979�.
�17� S. Tasaki and P. Gaspard, J. Stat. Phys. 109, 803 �2002�.
�18� T. Miyaguchi and Y. Aizawa, Phys. Rev. E 75, 066201 �2007�.
�19� A positive function L is slowly varying at 0 if L�tx�

L�t� →1, as t
→0 for every x�0.

�20� D. R. Cox, Renewal Theory �Methuen, London, 1962�.
�21� Japan Meteorological Agency Earthquake Catalog, http://

wwweic.eri.u-tokyo.ac.jp/db/jma1
�22� National Earthquake Information Center, http://neic.usgs.gov/

neis/epic/epic_global.html
�23� A. Corral, Phys. Rev. Lett. 92, 108501 �2004�.
�24� T. Hasumi, T. Akimoto, and Y. Aizawa, Physica A 388, 491

�2009�.
�25� T. Hasumi, C. Chen, T. Akimoto, and Y. Aizawa, Tectonophys-

ics 485, 9 �2010�.
�26� R. Shaw, The Dripping Faucet as a Model Chaotic System

�Aerial, Santa Cruz, 1984�.
�27� V. Livina, S. Tuzov, S. Havlin, and A. Bunde, Physica A 348,

591 �2005�.
�28� A. Corral, Tectonophysics 424, 177 �2006�.
�29� D. R. Cox and H. D. Miller, The Theory of Stochastic Pro-

cesses �Chapman and Hall, London, 1965�.
�30� D. R. Bickel, Physica A 265, 634 �1999�.
�31� T. Sauer, Phys. Rev. Lett. 72, 3811 �1994�.

AKIMOTO, HASUMI, AND AIZAWA PHYSICAL REVIEW E 81, 031133 �2010�

031133-6


